
1. Workflow

1.1. Setting Up the Raspberry Pi and connecting the sensor

The raspberry pi was booted with the Raspberry Pi OS Lite software provided
by raspberrypi.org. Therefore no initial software was installed and no GUI
was provided. In order for the raspberry pi to recognize the i2c client, some
configurations of the pi needed to be changed.

$ sudo rasp i −c o n f i g

Choose 7 interface options, choose i2c and enable i2c interface.After this a reboot
of the raspberry pi is neccessary. To work with the i2c bus the packages python-
smbus and i2c-tools are needed.

$ sudo apt−get update
$ sudo apt−get i n s t a l l i2c−t o o l s
$ sudo apt−get i n s t a l l python−smbus

With the command lsmod it can be checked wheter the activation of the i2c
has worked. The temperature and pressure sensor BME280 was connected to
the raspberry pi using the breadboard as seen in figure 1a The sensor was not
soldered to the pins, making the whole construction quite instable. The piece
of paper was needed to hold the sensor in place so it could be recognized by the
raspberry pi. The slightes movement of the cables or the sensor would cause
the raspberry pi to not detect the sensor anymore (1.

1



(a) General set up of the Raspberry Pi
connected to the BME280 sensor

(b) Set up of the cables at the Raspberry
Pi

(c) Set up of the BME280 sensor on the
breadboard

Figure 1: Set up of the hardware

With the i2c-tools function i2cdetect the connected sensor could be detected.
The sensor should be detected on port 0x76 by default (see figure 2, if it does
not show 76 it means that the sensor was not detected by the pi. To check
whether the sensor is not only detected but can also pass data to the pi one can
type the command i2cget. If the output is an error then something is wrong.

$ i 2 c d e t e c t −y 1
$ i 2 c g e t −y 1 0x76

Figure 2: Detection of the sensor at port 0x76

I decided to not read the data from scratch but to use one of the many

2



different provided libraries for this specific sensor. As there are many different
libraries out it was in the beginning difficult to decide which one works best. The
library that I decided was the best is from adafruit. The documentation can be
found here: https://circuitpython.readthedocs.io/projects/bme280/en/latest/api.html
.

2. Plotting Data

I wrote two programs that can be run with python3. One monitors the temper-
ature data from the sensor continously creates a plot and only ends when the
program is aborted by typing control+C. The other one monitors temperature,
pressure, humidity and altitude for a specific amount of time and then produces
a figure of all four datasets.

2.1. Continously monitoring temperature

The code is executed by calling python3 ¡filename.py¿. The code runs until it is
aborted, during the running time it collects the temperature measured by the
sensor and draws a graph from all the previously measured temperatures and
the current temperatures, saves the graph and waits for 10 seconds.

Listing 1: Python example

import board
import bus io
import adafru it bme280
import matp lo t l i b . pyplot as p l t
import time

# Create l i b r a r y o b j e c t us ing our Bus I2C por t
i 2 c = bus io . I2C ( board . SCL, board .SDA)
bme280 = adafru it bme280 . Adafruit BME280 I2C ( i 2 c )

xs= [ ]
ys= [ ]

#monitor con t inou s l y
while True :

xs . append ( time . s t r f t i m e ( ”%Y,%m,%d,%H,%M,%S” ) )
ys . append ( bme280 . temperature )

#draw graph
p l t . p l o t ( xs , ys )
p l t . x t i c k s ( r o t a t i o n =45, ha=’ r i g h t ’ )
p l t . t i t l e ( ’BME280 temperature over time ’ )
p l t . y l a b e l ( ’ Temperature ( deg C) ’ )
p l t . s a v e f i g ( ’ Temperature cont . pdf ’ )

time . s l e e p (10)

3



The code could definitely be optimized, as it is probably not optimal that
the program creates a new graph every time and overwrites the old graph.
This code only continously monitors the temperature. By adapting the line
ys.append(bme280.temperature) other information from the sensor could be
read and monitored. Additionally the simple abort of the program sometimes,
depending on when the program is ended with control+C, the figure created is
damaged, as it might happen that the saving process is interrupted.

2.2. Monitoring Temperature, Humidity, Pressure, Alti-
tude

The code below asks the user for how long the temperature, pressure, humidity
and altitude should be monitored. Only integer values can be given as input.
The program monitors the data and draws a plot of them.

Listing 2: Python example

import time
import board
import bus io
import adafru it bme280
import matp lo t l i b . pyplot as p l t

# Create l i b r a r y o b j e c t us ing our Bus I2C por t
i 2 c = bus io . I2C ( board . SCL, board .SDA)
bme280 = adafru it bme280 . Adafruit BME280 I2C ( i 2 c )

# change t h i s to match the l o c a t i o n ’ s pre s sure (hPa) at sea l e v e l
bme280 . s e a l e v e l p r e s s u r e = 1013.25
temperature = [ ]
humidity = [ ]
p r e s su r e = [ ]
a l t i t u d e = [ ]
cu r r ent t ime = [ ]

mon time = input ( ”For how many minutes do you want to measure temperature ,
pres sure , humidity and a l t i t u d e ? Type only a number : ” )
mon time = int ( mon time )∗60
counter = 0
while counter <(mon time / 2 ) :

temperature . append ( bme280 . temperature )
humidity . append ( bme280 . r e l a t i v e h u m i d i t y )
p r e s su r e . append ( bme280 . p r e s su r e )
a l t i t u d e . append ( bme280 . a l t i t u d e )
cur r ent t ime . append ( time . s t r f t i m e ( ”%H,%M,%S” ) )
print ( ”\nTemperature : %0.1 f C” % bme280 . temperature )
print ( ”Humidity : %0.1 f %%” % bme280 . r e l a t i v e h u m i d i t y )
print ( ” Pressure : %0.1 f hPa” % bme280 . p r e s su r e )
print ( ” Al t i tude = %0.2 f meters ” % bme280 . a l t i t u d e )
counter = counter + 1
time . s l e e p (2 )

4



#draw the p l o t
f i g , axs = p l t . subp lo t s (2 , 2 , sharex=True )
axs [ 0 , 0 ] . p l o t ( current t ime , temperature )
axs [ 0 , 0 ] . s e t t i t l e ( ’ Temperature ’ )
axs [ 0 , 1 ] . p l o t ( current t ime , humidity , ’ tab : orange ’ )
axs [ 0 , 1 ] . s e t t i t l e ( ’ Humidity ’ )
axs [ 1 , 0 ] . p l o t ( current t ime , pres sure , ’ tab : green ’ )
axs [ 1 , 0 ] . s e t t i t l e ( ’ Pressure ’ )
axs [ 1 , 1 ] . p l o t ( current t ime , a l t i t u d e , ’ tab : red ’ )
axs [ 1 , 1 ] . s e t t i t l e ( ’ A l t i tude ’ )

for ax in axs . f l a t :
ax . s e t x l a b e l ( ’ Timepoints o f measurement ’ , f o n t s i z e =5)
ax . t i ck params ( l a b e l r o t a t i o n =45)

f i g . s a v e f i g ( ’ Measurements . pdf ’ )

Improvements of the code could be done by adapting the input so that one
could also enter other numbers than just integers, for example 0.5 minutes of
monitoring. Also the labelling of the x axis could be adapted, by adapting the
fontsize.

3. Results

20
21

,04
,11

,12
,06

,35

20
21

,04
,11

,12
,06

,48

20
21

,04
,11

,12
,07

,00

20
21

,04
,11

,12
,07

,12

20
21

,04
,11

,12
,07

,24

20
21

,04
,11

,12
,07

,37

20
21

,04
,11

,12
,07

,49

20
21

,04
,11

,12
,08

,02

20
21

,04
,11

,12
,08

,14

20
21

,04
,11

,12
,08

,27

20
21

,04
,11

,12
,08

,40

20
21

,04
,11

,12
,08

,53

20
21

,04
,11

,12
,09

,06

19.755

19.760

19.765

19.770

19.775

Te
m

pe
ra

tu
re

 (d
eg

 C
)

BME280 temperature over time

Figure 3: Continous monitoring of the temperature with the BME280 sensor

5



Timepoints of measurement20
.30

20
.31

20
.32

20
.33

Temperature

Timepoints of measurement39
.5

39
.6

39
.7

39
.8

Humidity

22
,15

,13

22
,15

,15

22
,15

,18

22
,15

,20

22
,15

,22

22
,15

,25

22
,15

,27

22
,15

,30

22
,15

,32

22
,15

,34

22
,15

,37

22
,15

,39

22
,15

,41

22
,15

,44

22
,15

,46

22
,15

,48

22
,15

,51

22
,15

,53

22
,15

,56

22
,15

,58

22
,16

,00

22
,16

,03

22
,16

,05

22
,16

,07

22
,16

,10

22
,16

,12

22
,16

,15

22
,16

,17

22
,16

,19

22
,16

,22

Timepoints of measurement

97
6.8

7597
6.9

0097
6.9

2597
6.9

5097
6.9

75

Pressure

22
,15

,13

22
,15

,15

22
,15

,18

22
,15

,20

22
,15

,22

22
,15

,25

22
,15

,27

22
,15

,30

22
,15

,32

22
,15

,34

22
,15

,37

22
,15

,39

22
,15

,41

22
,15

,44

22
,15

,46

22
,15

,48

22
,15

,51

22
,15

,53

22
,15

,56

22
,15

,58

22
,16

,00

22
,16

,03

22
,16

,05

22
,16

,07

22
,16

,10

22
,16

,12

22
,16

,15

22
,16

,17

22
,16

,19

22
,16

,22

Timepoints of measurement

30
6.6

30
6.8

30
7.0

30
7.2

Altitude

Figure 4: Plotting of temperature, humidity, pressure and altitude measured by
the BME280 sensor

4. Learnings, Take Home Message

I installed the Raspian lite version as software on the Raspberry Pi. Therefore I
had to manually install everything. In the beginning I also did not think about
using conda during the whole process to manage my python packages. During
the installation I ran into dependency problems that conda would have solved
automatically, however I had to manually install all missing packages. This was
kind of tedious so next time I would probably spend more time thinking about
how to set up the Pi in the best way to avoid problems in the future. During
my research how to access and process the data from the i2c bus, I realized that
processing the raw data is quite hard and complex. Therefore I then decided to
use a provided library that converts the raw data into readable and processed
data. If the project would be continued with other students I would suggest to
solder the sensor to the pins. I haven’t done this and it took me a long time to
adjust the sensor so that it is connected to the Pi and also submits data. The
slightest movement deconnected the sensor and I had to reconnect it.

6


